METAL GATE RF SILICON FET

GOLD METALLISED **MULTI-PURPOSE SILICON DMOS RF FET** 80W – 28V – 175MHz SINGLE ENDED

FEATURES

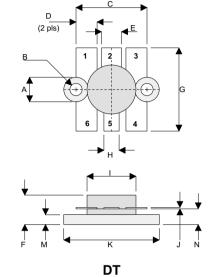
- SIMPLIFIED AMPLIFIER DESIGN
- SUITABLE FOR BROAD BAND APPLICATIONS
- LOW Cree
- SIMPLE BIAS CIRCUITS
- LOW NOISE
- HIGH GAIN 16 dB MINIMUM

APPLICATIONS

 HF/VHF COMMUNICATIONS from 1 MHz to 175 MHz

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

P _D	Power Dissipation	175W
BV _{DSS}	Drain – Source Breakdown Voltage	70V
BV _{GSS}	Gate – Source Breakdown Voltage	±20V
I _{D(sat)}	Drain Current	20A
T _{stg}	Storage Temperature	–65 to 150°C
Тj	Maximum Operating Junction Temperature	200°C


Semelab Ltd reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Website: http://www.semelab.co.uk

MECHANICAL DATA

PIN 1	SOURCE (COMMON)	PIN 2	GATE
PIN 3	SOURCE (COMMON)	PIN 4	SOURCE (COMMON)
PIN 5	DRAIN	PIN 6	SOURCE (COMMON)

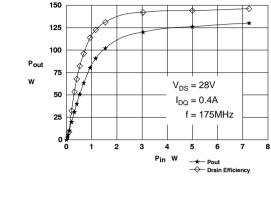
DIM	mm	Tol.	Inches	Tol.
А	6.35 DIA	0.13	0.250 DIA	0.005
В	3.17 DIA	0.13	0.125 DIA	0.005
С	18.41	0.25	0.725	0.010
D	5.46	0.13	0.215	0.005
Е	5.21	0.13	0.205	0.005
F	7.62	MAX	0.300	MAX
G	21.59	0.38	0.850	0.015
н	3.94	0.13	0.155	0.005
	12.70	0.13	0.500	0.005
J	0.13	0.03	0.005	0.001
К	24.76	0.13	0.975	0.005
М	2.59	0.13	0.102	0.005
Ν	4.06	0.25	0.160	0.010

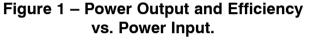
ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

Parameter		Test Conditions		Min.	Тур.	Max.	Unit
B\/	Drain-Source	$V_{GS} = 0$	I _D = 100mA	70			V
BV _{DSS}	Breakdown Voltage	VGS – 0	ID - 10011X	10			V
1	Zero Gate Voltage	$V_{DS} = 28V$ $V_{GS} = 0$	/ / _ 0			4	mA
DSS	Drain Current				4		
I _{GSS}	Gate Leakage Current	$V_{GS} = 20V$	$V_{DS} = 0$			1	μA
V _{GS(th)}	Gate Threshold Voltage *	I _D = 10mA	$V_{DS} = V_{GS}$	1		7	V
9 _{fs}	Forward Transconductance *	V _{DS} = 10V	I _D = 4A	3.2			S
G _{PS}	Common Source Power Gain	P _O = 80W		16			dB
η	Drain Efficiency	V _{DS} = 28V	I _{DQ} = 0.4A	50			%
VSWR	Load Mismatch Tolerance	f = 175MHz	2	20:1			—
C _{iss}	Input Capacitance	V _{DS} = 28V	$V_{GS} = -5V$ f = 1MHz			240	pF
C _{oss}	Output Capacitance	V _{DS} = 28V	$V_{GS} = 0$ f = 1MHz			120	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 28V	$V_{GS} = 0$ f = 1MHz			10	pF

* Pulse Test: Pulse Duration = 300 μs , Duty Cycle $\leq 2\%$

HAZARDOUS MATERIAL WARNING


The ceramic portion of the device between leads and metal flange is beryllium oxide. Beryllium oxide dust is highly toxic and care must be taken during handling and mounting to avoid damage to this area.


THESE DEVICES MUST NEVER BE THROWN AWAY WITH GENERAL INDUSTRIAL OR DOMESTIC WASTE.

THERMAL DATA

R _{THj-case}	Thermal Resistance Junction – Case	Max. 1.0°C / W
-----------------------	------------------------------------	----------------

Semelab Ltd reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

80

70

60

50

40

30

20

%

Efficiency

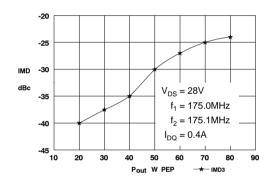
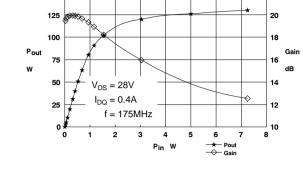



Figure 3 – IMD vs. Output Power.

150

D1004UK OPTIMUM SOURCE AND LOAD IMPEDANCE

Frequency	Z _S	ZL
MHz	Ω	Ω
175MHz	2.2 + j1.9	3.2 - j0.5

Semelab Ltd reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

D1004UK

22

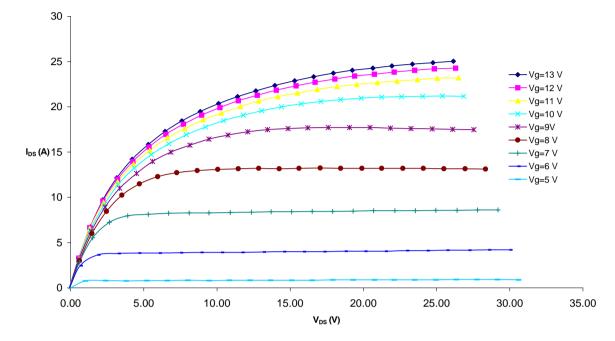
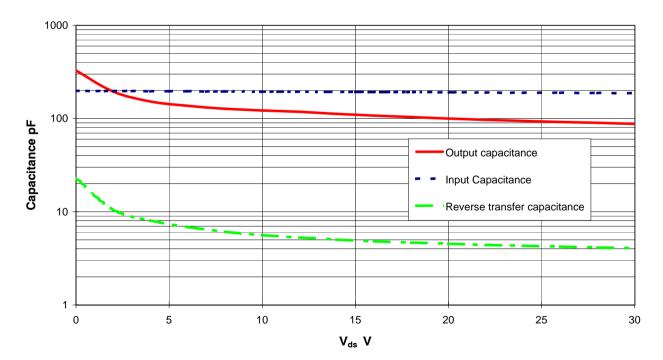
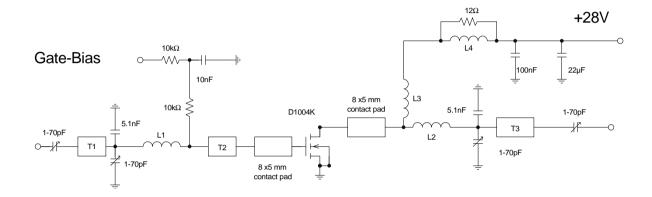



Figure 4 – Typical IV Characteristics.

Figure 5 – Typical CV Characteristics.


Semelab Ltd reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab Ltd. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk

Document Number 6257 Issue 2

D1004UK 175MHz TEST FIXTURE

Substrate 1.6mm PTFE/ glass, Er= 2.5 All microstrip lines W=4.4mm

- T1 7.5mm T2 6mm
- T3 8mm

- L1 Hairpin loop 16swg 13mm dia
- L2 Hairpin loop 16swg 11mm dia
- L3 10 turns 18swg enamelled copper wire, 4mm i.d.
- L4 12 turns 18swg enamelled copper wire on 22.7mm o.d. ferrite core

Semelab Ltd reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.