Resistors

Metal Glaze™ High Power Density **Surface Mount Power Resistor**

MRC Series

- 1/2 watt in 1/8 watt package
- MRC1/2: 0.05Ω to 1.0Ω (contact factory for higher values)
- 150°C maximum operating temperature
- Superior surge handling capability
- RoHS compliant Versions available

OBSOLETE

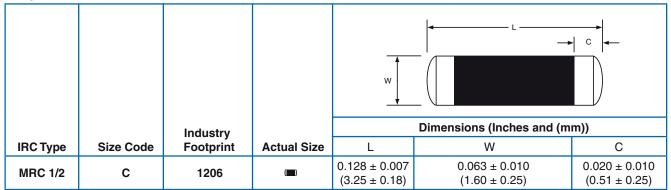
All Pb-free parts comply with EU Directive 2011/65/EU amended by (EU) 2015/863 (RoHS3)

Electrical Data

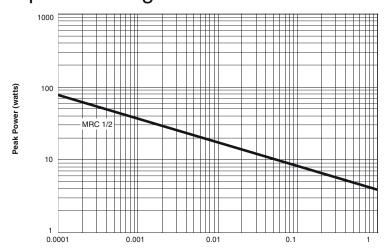
Size Code ¹	Industry Footprint	IRC Type	Max. Power Rating	Working Voltage ²	Max. Voltage	Resistance Range (ohms) ³	Tolerance (±%) ³	TCR (ppm/°C) ³	Product Catagory
С	1206	MRC1/2	1/2W @ 70°C	200	400	0.1 to 0.99	1,2,5	100	Low Range
						1.0 to 10K	1,2,5	50,100	Standard
						20 to 10K	0.25, 0.5	50,100	Tight Tolerance

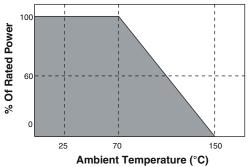
MRC Applications:

The MRC1/2 will dissipate 1/2 watt at 70°C on a 1206 footprint. The MRC is recommended for applications where board real estate is a major concern. Due to high power density and superior surge handling capability, it is also recommended as a direct replacement on existing board designs where standard 1206 resistors are marginal or failing.

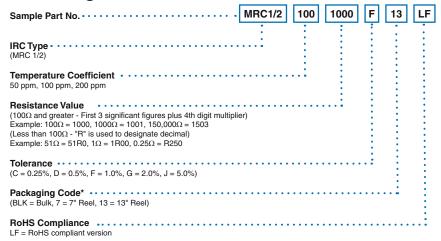

Environmental Data

Characteristics	Maximum Change	Test Method		
Temperature Coefficient	As specified	MIL-R-55342E Par 4.7.9 (-55°C + 125°C)		
Thermal Shock	±(0.5% + 0.01Ω)	MIL-R-55342E Par 4.7.3 (-65°C + 150°C, 5 cycles)		
Low Temperature Operation	±(0.25% + 0.01Ω)	MIL-R-55342E Par 4.7.4 (-65°C @ working voltage)		
Short Time Overload	±(1.0% + 0.01Ω)	MIL-R-55342E Par 4.7.5 2.5 x √PxR for 5 seconds		
High Temperature Exposure	±(0.5% + 0.01Ω)	MIL-R-55342E Par 4.7.6 (+150°C for 100 hours)		
Resistance to Bonding Exposure	±(0.25% + 0.01Ω)	MIL-R-55342E Par 4.7.7 (Reflow soldered to board at 260°C for 10 seconds)		
Solderability	95% minimum coverage	MIL-STD-202, Method 208 (245°C for 5 seconds)		
Moisture Resistance	±(0.5% + 0.01Ω)	MIL-R-55342E Par 4.7.8 (10 cycles, total 240 hours)		
Life Test	±(1.0% + 0.01Ω)	MIL-R-55342E Par 4.7.10 (2000 hours @ 70°C intermittent)		
Terminal Adhesion Strength	$\pm (1\% + 0.01\Omega)$ no mechanical damage	1200 gram push from underside of mounted chip for 60 seconds		
Resistance to Board Bending	$\pm (1\% + 0.01\Omega)$ no mechanical damage	Chip mounted in center of 90mm long board, deflected 5mm so as to exert pull on chip contacts for 10 seconds		


OBSOLETE


Physical Data

Repetitive Surge Curve


Power Derating Curve

Surge or Pulse Duration (seconds)

Note: Use for repetitive pulses where the average power dissipation is not to exceed the component rating at 70°C . Surge handling capacity for low-repetitive surges may be significantly greater than shown above. Contact factory for recommendations.

Ordering Data

