PIN Silicon Photodiode

OP913 Series

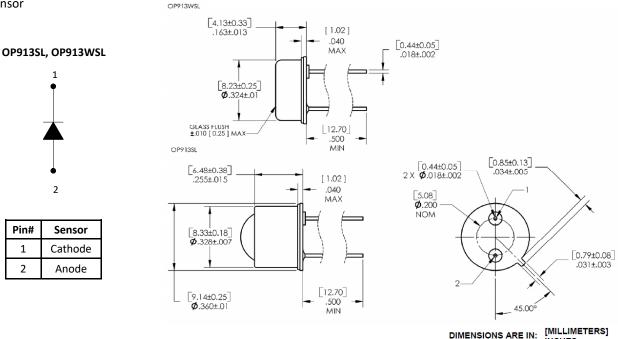
Features:

- TO-05 hermetically sealed package
- Linear response vs. irradiance
- Fast switching time
- · Narrow receiving angle
- Enhanced temperature range

Description:

OP913SL and OP913WSL consist of a PIN silicon photodiode mounted in a two-leaded TO-05 hermetically sealed package.

OP913SL has a dome lens with an acceptance angle of 10° when measured from the optical axis to the half power point. **OP913WSL** has a flat lens with an acceptance half angle of 30°. This large active area allows very low light level detection.


Please refer to Application Bulletin 210 for additional thermal design information.

Applications:

- Non-contact reflective object sensor
- Assembly line automation
- Machine automation
- Machine safety
- End of travel sensor
- Door sensor

Ordering Information Part Number Sensor Viewing Angle Lead Length Active Area OP913SL Photodiode 20° 0.50" 0.100x 0.100

OP913SL, OP913WSL

General Note

PIN Silicon Photodiode

OP913 Series

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage Temperature Range	-65° C to +150° C
Operating Temperature Range	-65° C to +125° C
Reverse Voltage	32 V
Lead Soldering Temperature [1/16 inch (1.6 mm) from the case for 5 seconds with soldering iron] (1)	260° C
Power Dissipation ⁽²⁾	150 mW

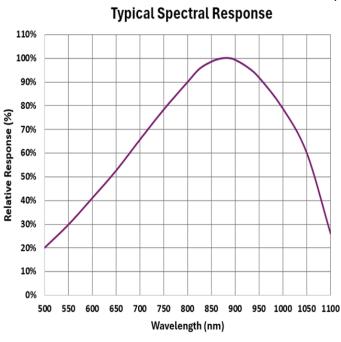
Electrical Characteristics (T_A = 25° C unless otherwise noted)

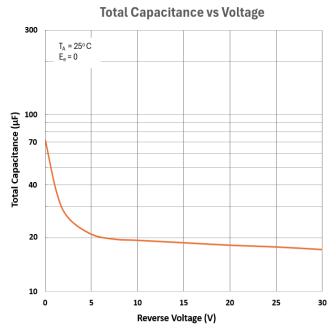
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
I _L ⁽³⁾⁽⁴⁾	Reverse Light Current: OP913SL OP913WSL	120 40		- -	μΑ	$V_R = 5 \text{ V}, E_E = 5 \text{ mW/cm}^2$
I _D ⁽³⁾	Reverse Dark Current	-	-	25	nA	V _R = 10 V, E _E = 0
V _{cc}	Open Circuit Voltage: OP913SL OP913WSL		400 300	-	mV	E _E = 5 mW/cm ²
I _{sc}	Short Circuit Current: OP913SL OP913WSL	120 40	-	-	μΑ	E _E = 5 mW/cm ²
V_{BR}	Reverse Breakdown Voltage	32	-	-	V	Ε _Ε = 100 μΑ
Ст	Total Capacitance	-	-	150	pF	V _R = 0, E _E = 0, f = 1 MHz
t _{ON} , t _{OFF}	Turn On / Turn Off Time	-	50	-	ns	$V_R = 10 \text{ V}, R_L = 1 \text{ k}\Omega$

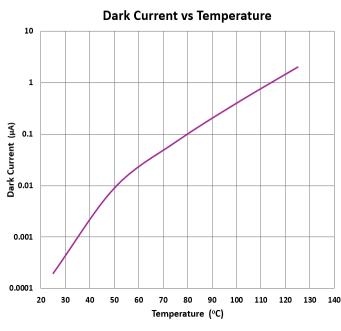
Notes:

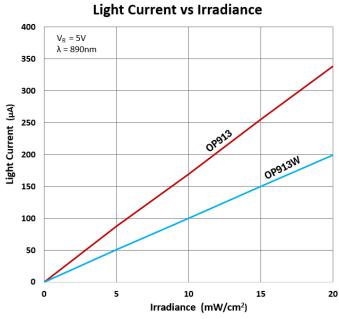
- (1) RMA flux is recommended. Duration can be extended to a maximum of 10 seconds when flow soldering.
- (2) Derate linearly 1.30 mW/° C above 25° C.
- (3) Junction temperature for all devices in this data sheet is maintained at 25° C.
- (4) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source.
- (5) At any particular wavelength the flux responsively, $R\theta$ is related to quantum efficiency by: $R\theta = \eta q (\lambda/1240)$, where ηq is the quantum efficiency in electrons per photon and λ is the wavelength in nanometers; thus at 900 nm, 0.60 A/W corresponds to a quantum efficiency of 83%.
- (6) NEP is the radiant flux at a specified wavelength, required for unity signal-to-noise ratio normalized for bandwidth. NEP calculation is made using responsivity at peak sensitivity wavelength, with spot noise measurement at 1000 Hz in a noise bandwidth of 6 Hz. (λ, f, Δ f) = (λp, 1000 Hz, 6 Hz).

Rev B 08/2025 Page 2


PIN Silicon Photodiode


OP913 Series




Typical Performance

OP913SL, OP913WSL

