Reflective Object Sensor

OPB608A, OPB608B, OPB608R, OPB608V

Obsolete (OPB608C)

Features:

- Phototransistor output
- Unfocused for sensing diffuse surface
- Low cost plastic housing
- Enhanced signal to noise ratio
- Reduced ambient light sensitivity

Description:

OPB608 reflective switches consist of an infrared emitting device (LED or VCSEL) and a NPN silicon phototransistor mounted "side-by-side" on a parallel axis in a black opaque plastic housing. All OPB608's (except OPB608R) have an emitting device and a phototransistor that are encapsulated in a visible filtering epoxy. The phototransistor responds to radiation from the emitter only when a reflective object passes within its field of view. The phototransistor has enhanced low current roll-off to improve the contrast ratio and immunity to background irradiance. LED versions are designed for near-field applications. The VCSEL version is designed for longer distances.

OPB608A and OPB608B devices are designed for applications with reflective distances between 0.050 " (1.270 mm) and $0.375^{\prime \prime}(9.525 \mathrm{~mm})$. OPB608V is designed for applications with reflective distances between $0.050^{\prime \prime}(1.270 \mathrm{~mm})$ and $1.200^{\prime \prime}(30.480 \mathrm{~mm})$. All of these are designed for light patterns not visible to the human eye. By utilizing the night enhancement function of a camera, the near infrared light pattern can be seen. This allows a user to see the pattern shining on the reflective object.

OPB608R is designed for applications with reflective distances between $0.050^{\prime \prime}(1.270 \mathrm{~mm})$ and $0.300^{\prime \prime}(7.620 \mathrm{~mm})$. It is designed for light patterns visible to the human eye. The efficiency of this sensor is lower for optical wavelengths in the visible range, thus reducing the distance that can be used.

Reflective distances are dependent upon the drive current for the light emitting device, the wavelength of the light source, and the type of reflective material; therefore, each application should be checked for the ability to meet each requirement.

Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Non-contact reflective object sensor
- Assembly line automation
- Machine automation
- Machine safety
- End of travel sensor
- Door sensor

Ordering Information				
Part Number	LED Peak Wavelength	Sensor	Reflection Distance Inch (mm)	Lead Length
OPB608A	890 nm	Rbe Transistor	See Graph on Page 4	$\begin{aligned} & 0.18 " \\ & \text { (Min) } \end{aligned}$
OPB608B				
OPB608C (Obsolete)				
OPB608R	660 nm			
OPB608V	850 nm			

Additional laser safety information can be found on the

Optek website. See application \#221

Classification is not marked on the device due to space limitations. See package outline for centerline of optical radiance. Operating devices beyond maximum rating may cause devices to exceed rated classification.

Reflective Object Sensor

OPB608A, OPB608B, OPB608R, OPB608V

Tr Electronics

Obsolete (OPB608C)

Electrical Specifications

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Operating Temperature Range } & \\ \text { OPB608 A, B, \& R } \\ & \text { OPB608V }\end{array}$	$\begin{array}{r} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{array}$
Lead Soldering Temperature [1/16 inch (1.6 mm) from the case for 5 sec . with soldering iron] ${ }^{(1)}$	$260^{\circ} \mathrm{C}$
Total Power Dissipation	100 mW
OPB608A, OPB608B (Infrared-LED - 890 nm)	
Forward DC Current	50 mA
Peak Forward Current ($1 \mu \mathrm{~s}$ pulse width, 300 pps)	3 A
Reverse DC Voltage	2 V
OPB608R (Visible Red-LED - 660 nm)	
Forward DC Current	50 mA
Reverse DC Voltage	5 V
OPB608V (Infrared-VCSEL - 850 nm)	
Forward DC Current	12 mA
Reverse DC Voltage	5 V
Phototransistor	
Collector-Emitter Voltage	30 V
Emitter Reverse Current	10 mA
Collector DC Current	25 mA

Notes:
(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Methanol or isopropanol are recommended as cleaning agents. The plastic housing is soluble in chlorinated hydrocarbons and keytones.

Obsolete (OPB608C)

Electrical Specifications

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Infrared-LED (890 nm)						
V_{F}	Forward Voltage	-	-	1.7	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$
Infrared-LED (660 nm)						
$V_{\text {F }}$	Forward Voltage	-	1.9	2.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$V_{\text {R }}$	Reverse Voltage	5	-	-	v	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$
Infrared VCSEL (850 nm)						
V_{F}	Forward Voltage	-	-	2.2	V	$\mathrm{I}_{\mathrm{F}}=7 \mathrm{~mA}$
I_{R}	Reverse Current	-	-	30	nA	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
$\mathrm{I}_{\text {TH }}$	Threshold Current	2	-	5.5	mA	-
Θ	Beam Divergence	-	12	-	Deg.	$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$
Phototransistor						
$\mathrm{V}_{\text {(BR) }}$ CEO	Collector Emitter Breakdown Voltage	30	-	-	V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{E}}=0 \mu \mathrm{~W} / \mathrm{cm}^{2}$
$\mathrm{V}_{(\text {Br) ECO }}$	Emitter Collector Breakdown Voltage	0.4	-	-	V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{E}}=0 \mu \mathrm{~W} / \mathrm{cm}^{2}$
$\mathrm{V}_{\text {CEISAT) }}$	Saturation Voltage	-	-	. 40	V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~d}=0.053^{\prime \prime}$
$\mathrm{I}_{\text {ceo }}$	Collector Emitter Dark Current	-	-	100	nA	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{E}_{\mathrm{E}}=\leq .10 \mu \mathrm{~W} / \mathrm{cm}^{2}, \mathrm{I}_{\mathrm{F}}=0$
Combined						
$I_{\text {coon }}$	On-State Collector Current OPB608A OPB608B OPB608R	2 1 1	-	- 4 6	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~d}=0.053 \text { inch }(1.35 \\ & \mathrm{mm})^{(1)(2)} \end{aligned}$
	OPB608V	5	-	-		$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~d}=0.053 \text { inch }(1.35 \\ & \mathrm{mm})^{(1)(2)} \end{aligned}$
$I_{\text {c(OFF) }}$	Off-State Collector Current LED VCSEL	-	-	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	nA	No reflective surface, $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$

Notes:

(1) Distance from the front of the lens to reflective surface.
(2) Measured using Eastman Kodak gray card. The white side of the card is used as a 90% diffuse reflective surface. Reference Eastman Kodak catalog \#E152 7795.
(3) All parameters are tested using pulse techniques.

Performance

T
 Electronics

Obsolete (OPB608C)

