Obsolete (OPB821TXV)

Features:

- Non-contact switching
- Low profile to facilitate stacking
- Hermetically sealed components
- $24^{\prime \prime}$ (609.60 mm) minimum length wire conforms to MIL-W-16878
- TX components processed to MIL-PRF-19500

Description:

Each OPB821TX device consists of a gallium aluminum arsenide LED and a silicon phototransistor, which are soldered into a printed circuit board and mounted in a high temperature plastic housing on opposite sides of an $0.080^{\prime \prime}$ (2.03 mm) wide slot. Lead wires are \#24 AWG polytetraflouroethylene (PTFE) insulated, which conforms to MIL-W-16878.

Phototransistor switching takes place when an opaque object passes through the slot. For maximum output signal, neither the LED nor the phototransistor is apertured.

TX device components are processed to OPTEK's military screening program patterned after MIL-PRF-19500.
Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.
Contact your local representative or OPTEK for more information.

Applications:

- Non-contact object sensing
- Assembly line automation
- Machine automation

Part Number	LED Peak Wavelength	Sensor	Slot Width / Depth	$I_{\text {C(ON) }}$ (mA) Min
OPB821TX	890 nm	Transistor	$0.080 " /$ $0.255^{\prime \prime}$	0.80

$I_{F}(m A)$ Typ $/$ Max	$\mathbf{V}_{\text {CE }}$ (Volts) Max	A E M
$20 / 50$	30	0

Aperture Emitter/ Sensor	Lead Length / Spacing
$0.040 " /$	$24 " / 26$
$0.040 "$	AWG wire

- Equipment safety
- Machine safety

Color/Pin \#	Description	Color/Pin \#	Description
Green-3	Cathode	White-2	Collector
Orange-4	Anode	Blue-1	Emitter

Obsolete (OPB821TXV)

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Soldering Temperature (1/16 inch $[1.6 \mathrm{~mm}]$ from case for 5 seconds with soldering iron) ${ }^{(1)}$	$260^{\circ} \mathrm{C}$
Input Diode	
Continuous Forward Current	50 mA
Reverse Voltage	2 V
Power Dissipation ${ }^{(1)}$	100 mW

Output Phototransistor

Collector-Emitter Voltage	50 V
Emitter-Collector Voltage	7 V
Power Dissipation $^{(1)}$	100 mW

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
$V_{\text {F }}$	Forward Voltage ${ }^{(3)}$	1.00	1.35	1.70	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
		1.20	1.55	1.90		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$
		0.80	1.20	1.60		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$
I_{R}	Reverse Current	-	0.10	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$

Output Phototransistor

$\mathrm{V}_{\text {(BR) }}$ ceo	Collector-Emitter Breakdown Voltage	50	110	-	V	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0$
$\mathrm{V}_{\text {(BR)ECO }}$	Emitter-Collector Breakdown Voltage	7	10	-	V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$
$I_{\text {c(0FF) }}$	Collector-Emitter Dark Current	-	0.20	100	nA	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{F}}=0$
		-	10	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$
Coupled						
$I_{\text {con) }}$	On-State Collector Current ${ }^{(3)}$	800	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
		500	-	-		$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$
		500	-	-		$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CE(SAT) }}$	Collector-Emitter Saturation Voltage	-	0.20	0.30	V	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$

TT Electronics

Obsolete (OPB821TXV)

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Coupled						
t_{r}	Output Rise Time	-	12	20	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=1000 \Omega$
t_{f}	Output Fall Time	-	12	20		

Notes:
(1) Derate linearly $1.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(2) Methanol or isopropanol are recommended cleaning agents.
(3) Measurement is taken during the last $500 \mu \mathrm{~s}$ of a single 1.0 ms test pulse. Heating due to increased pulse rate or pulse width can cause change in measurement results.

