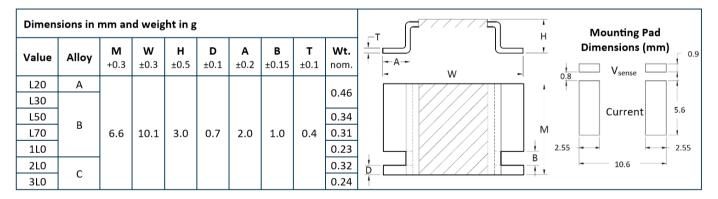
Low Resistance Metal Alloy Power Resistors

LRMAP4026

Features:

- 4-terminal Kelvin gullwing terminations
- Resistance range $0.2m\Omega$ to $3m\Omega$
- 5W rating in compact footprint
- Robust welded construction
- Low inductance



All parts are Pb-free and comply with EU Directive 2011/65/EU amended by (EU) 2015/863 (RoHS3)

Electrical Data

		LRMAP4026						
Resistance value	mΩ	0.2 (L20)	0.3 (L30)	0.5 (L50)	0.7 (L70)	1.0 (1L0)	2.0 (2L0)	3.0 (3L0)
Power rating, P _{r100}	W	5 4						
Alloy		А	В С					
Internal thermal impedance, R _{thi}	°C/W	4	5	7	9	13	16	20
TCR (resistive alloy)	ppm/°C	±20 -40 to 0						
TCR (resistor)	ppm/°C	±75 ±50			50			
Resistance tolerance	%	±1						
Inductance	nH	<3						
Ambient temperature range	°C	-65 to +170						

Physical Data

Marking

The component is laser marked with ohmic value (using R to indicate decimal position in ohms) and tolerance.

Solvent Resistance

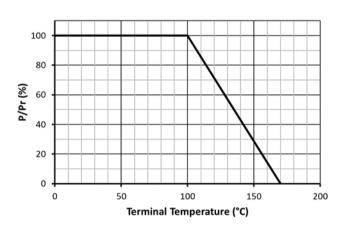
The component is resistant to all normal industrial cleaning solvents suitable for printed circuits.

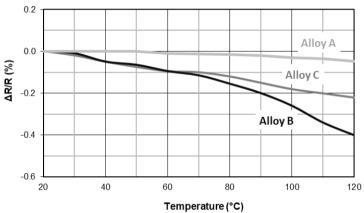
Construction

The component is formed from a continuous band of E-beam welded precision resistive strip. Different resistance alloys are used based on the resistance value. The component is supplied without plating.

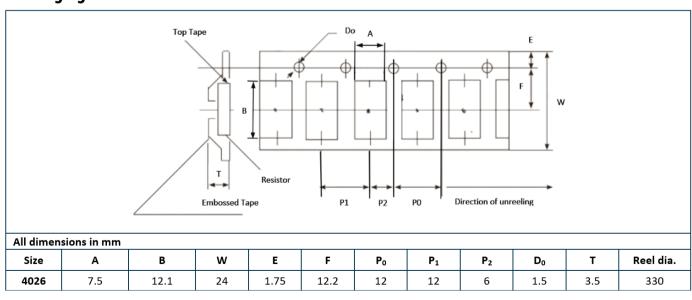
www.ttelectronics.com/resistors

Low Resistance Metal Alloy Power Resistors


Performance Data


Test	Methods	Reference	ΔR
Load Life	1000 hours, cyclic load at T_A =125°C, rated power per Temperature Derating graph below	MIL-STD-202 Method 108	±0.5%
Short Term Overload	5 × P _{r100} for 5s		±0.5%
High Temperature Exposure	1000 hours, T _A =170°C, unpowered	MIL-STD-202 Method 108	±0.5%
Temperature Cycle	1000 cycles, -55°C to +125°C	JESD22 Method JA-104	±0.5%
Biased Humidity	1000 hours, 85°C/85%RH, 10% of P _{r100}	MIL-STD-202 Method 103	±0.5%
Vibration	10 – 2000Hz, 5g, 20min, 12 cycles/axis x 3 axes	MIL-STD-202 Method 204	±0.5%
Resistance to Solder Heat	260 ± 5°C, 10 ± 1s	MIL-STD-202 Method 210	±0.5%
Solderability	245 ± 5°C, 5 ± 0.5s	J-STD-002	>95% coverage

Temperature Derating


(0.5% Stability)

Typical Temperature Characteristic

Packaging

© TT Electronics plc

Low Resistance Metal Alloy Power Resistors

Ordering Procedure

Example: LRMAP4026B-1L0FT1 (1 milliohm ±1%, Pb-free)

	1 Type	2 Alloy	3 Value	4 Tolerance	5 Packing T1 = plastic tape, 1000/reel		
ı	LRMAP4026	Α	3 characters	F = ±1%			
		В	L = milliohms				
		С					

www.ttelectronics.com/resistors