Plastic Infrared Emitting Diode

OP265WPS

Features:

- T-1 (3 mm) package style
- Broad irradiance pattern
- Point source with flat lens
- Higher power output than GaAs at equivalent drive currents
- 850 nm LED

Description:

The **OP265WPS** point source model is a flat-lensed 850 nm diode with a broad radiation pattern that provides relatively even illumination over a large area. Its stable forward voltage (V_F) vs. temperature characteristic makes this device appropriate for applications where voltage is limited (such as battery operation), while the low rise time/fall time (t_r/t_f) makes it ideal for high-speed operation.

OP265 devices conform to the OP505 and OP535 series devices.

Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

Applications:

- Space-limited applications
- Applications requiring coupling efficiency
- Precision optical designs
- Battery-operated or voltage-limited applications

Pin#	LED		
1	Cathode		
2	Anode		

CATHODE

2 ANODE

CONTAINS POLYSULFONE

To avoid stress cracking, we suggest using ND Industries' Vibra-Tite for thread-locking. Vibra-Tite evaporates fast without causing structural failure in OPTEK'S molded plastics.

General Note

Plastic Infrared Emitting Diode

OP265WPS

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage and Operating Temperature Range	-40° C to +100° C
Reverse Voltage	2.0 V
Continuous Forward Current	50 mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0 A
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron] (1)	260° C
Power Dissipation ⁽²⁾	100 mW

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS			
Input Diode	Input Diode								
E _{E (APT)} (3)	Apertured Radiant Incidence	2.70	-	-	mW/cm ²	I _F = 20 mA			
V _F	Forward Voltage	1.00	-	1.80	V	I _F = 20 mA			
I _R	Reverse Current	-	-	20	μΑ	V _R = 2 V			
λ_{P}	Wavelength at Peak Emission	-	850	-	nm	I _F = 10 mA			
В	Spectral Bandwidth between Half Power Points	-	20	-	nm	I _F = 20 mA			

Notes:

- 1. RMA flux is recommended. Duration can be extended to 10 second maximum when flow soldering. A maximum of 20 grams force may be applied to the leads when soldering.
- 2. Derate linearly at 1.07 mW/° C above 25° C.
- 3. E_{E(APT)} is a measurement of the average apertured radiant incidence upon a sensing area 0.081" (2.06 mm) in diameter, perpendicular to and centered on the mechanical axis of the lens and 0.590" (14.99 mm) from the measurement surface. E_{E(APT)} is not necessarily uniform within the measured area.

Rev C 07/2025 Page 2

Plastic Infrared Emitting Diode

OP265WPS

Typical Performance

OP265WPS

Forward Current vs Forward Voltage vs Temperature

2.2 2.0 € 1.8 Typical Forward Voltage 7:1 Ta = 25°C Ta = -40°C Ta = -20°C Ta = 0°C Ta = +40°C -Ta = +60°C 0.8 Ta = +80°C -Ta = +100°C 0.6 10 20 30 15 25 35 40 45 50

Optical Power vs Forward Current vs Temperature

Distance vs Power vs Forward Current

Forward Current (mA)

