Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB120B

Obsolete (OPB120A, OPB121B, OPB122B)

Features:

- Choice of output configuration
- Printed circuit board mounting
- Opaque plastic housing
- Low profile
- $0.080^{\prime \prime}(2.03 \mathrm{~mm})$ wide slot

IT Electronics

- $0.275^{\prime \prime}(6.99 \mathrm{~mm})$ lead spacing

Description:

The OPB120B consists of an infrared emitting diode and a Photologic ${ }^{\circledR}$ sensor (which is a monolithic integrated circuit that incorporates a linear amplifier and a Schmitt Trigger). The OPB120B has an LED and Photologic ${ }^{\circledR}$ sensor mounted on opposite sides of a $0.080^{\prime \prime}(2.03 \mathrm{~mm})$ wide gap of an opaque housing. The OPB120B has a molded $0.040^{\prime \prime}(1.016 \mathrm{~mm})$ wide aperture located over the emitter and $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ over the Photologic ${ }^{\circledR}$ sensor. All devices in this series have the added stability utilizing hysteresis built into the amplification circuitry.

The electrical output is a buffered Totem-Pole.
Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- Edge sensing
- Object sensing

Ordering Information		
Part Number	Sensor Photologic $^{\otimes}$	Aperture Emitter/Sensor
OPB120A (Obsolete)	Totem-Pole	$0.04^{\prime \prime} / 0.04^{\prime \prime}$
OPB120B		$0.04^{\prime \prime} / 0.01^{\prime \prime}$
OPB121B (Obsolete)	Open-Collector	$0.04^{\prime \prime} / 0.01$
OPB122B (Obsolete)	Inverted Totem- Pole	0.0

OPB120 Buffered Totem-Pole

Obsolete (OPB120A, OPB121B, OPB122B)

Electrical Specifications

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Supply Voltage (not to exceed 3 seconds)	10 V
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Soldering Temperature $\left(1 / 16^{\prime \prime}(1.6 \mathrm{~mm}) \text { from case for } 5 \text { seconds with soldering iron }\right)^{(1)}$	$260^{\circ} \mathrm{C}$
Input Infrared Diode	
Input Diode Power Dissipation ${ }^{(2)}$	100 mW
Output Photologic ${ }^{\circledR}$ Power Dissipation ${ }^{(4)}$	200 mW
Total Device Power Dissipation ${ }^{(5)}$	300 mW

Notes:
(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Derate linearly $2.22 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(3) Normal application would be with light source blocked, simulated by $\mathrm{I}_{\mathrm{F}}=0$.
(4) Derate linearly $4.44 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(5) Derate linearly $6.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(6) Applies to Totem Pole configurations (OPB120B) only.
(7) All parameters tested using pulse technique.

Photologic® Slotted Optical Switch

OPB120B

Electronics

Electrical Specifications

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode (see OP240 for additional information)						
V_{F}	Forward Voltage	-	-	1.7	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Output Photologic ${ }^{\text {® }}$ Sensor (see OPL560 for additional information)						
$\mathrm{V}_{\text {cc }}$	Operating D.C. Supply Voltage	4.75	-	5.25	V	
$\mathrm{I}_{\text {CLL }}$	Low Level Supply Current: Buffered Totem-Pole Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
$\mathrm{I}_{\mathrm{CCH}}$	High Level Supply Current: Buffered Totem-Pole Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage: Buffered Totem-Pole Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
V_{OH}	High Level Output Voltage: Buffered Totem-Pole Output	2.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\text {OH }}=-800 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{F}}(+)$	LED Positive-Going Threshold Current	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}}(+) / \mathrm{I}_{\mathrm{F}}(-)$	Hysteresis	-	2	-	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Electrical Characteristics ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
I_{OS}	Short Circuit Output Current: Buffered Totem-Pole Output	-20	-	-100	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ Output $=\mathrm{GND}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Output Rise Time, Output Fall Time	-	70	-	ns	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{I}_{\mathrm{F}}=0$ or 20 mA $\mathrm{R}_{\mathrm{L}}=8 \mathrm{TTL}$ Loads (Totem-Pole)
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Low-High \& High-Low	-	5	-	$\mu \mathrm{m}$	

Notes:
(1) Normal application would be with light source blocked, simulated by $\mathrm{I}_{\mathrm{F}}=00$.
(2) Applies to Totem Pole configurations (OPB120B) only.

Photologic ${ }^{\circledR}$ Slotted Optical Switch

ナ
 Electronics

Obsolete (OPB120A, OPB121B, OPB122B)

