OPV300, OPV310, OPV310Y, OPV314, OPV314Y

Features:

- 850nm VCSEL Technology
- Data rates up to 2.5 Gbps
- High thermal stability
- Low drive current / high output density
- Narrow and concentric beam angle
- Recommended for multimode fiber applications
- Burned in for communication level reliability

Description:

The OPV300 / OPV310 / OPV314 series are high performance 850nm Vertical Cavity Surface Emitting Laser (VCSEL). The OPV300 and OPV310 are designed to be utilized for sensing applications as well as air transmission of data. The OPV314 is designed for high speed communication links. The OPV310 / OPV314 combine all the performance advantages of a VCSEL with the addition of a power monitor diode for precise control of optical power. The OPV310 and OPV314 have a back monitor photodiode used for optical power management or optical reception for data communication applications.

The OPV300 / OPV310 have a flat lens while the OPV314 has a microbead lens. Refer to mechanical drawings for details.

The high performance 850nm VCSEL is designed for applications where low current is required with high on-axis optical power. These product's combine features including high speed, high output optical power and concentric beam making it an ideal transmitter for integration into all types of data communications equipment as well as for reflective and transmissive switches.

Applications:

- Fiber Channel
- Gigabit Ethernet
- ATM
- VSR
- Intra-System links
- Optical backplane interconnects
- Reflective sensing
- Interruptive sensing
- Long distance spot illumination

This component is sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product.

RoHS

Additional laser safety information can be found on the Optek website. See application bulletin #221. Classification is not marked on the device due to space limitations. See package outline for centerline of optical radiance. Operating devices beyond maximum rating may result in hazardous radiation exposure.

OPV300, OPV310, OPV310Y, OPV314, OPV314Y

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Operating Temperature Range	0°C to +70°C
Storage Temperature Range	-40°C to +100°C
Maximum Forward Peak Current, continuous	12 mA
Maximum Reverse Voltage	5 V
Max. Continuous Optical Power at 70° C	1.1 mW
Lead Soldering Temperature	260°C for 10 sec.
Maximum Forward Current, pulsed (1 μs P.W., 10% D.C.)	48 mA

Notes:

- (1) Threshold Current is based on the two line intersection method specified in Telcordia GR-468-Core. Line 1 from 4 mA to 6 mA. Line 2 from 0 mA to 0.5 mA.
- (2) Series Resistance is the slope of the Voltage-Current line from 5 to 8 mA.
- (3) Slope efficiency is the slope of the best fit LI line from 5 mA to 8 mA using no larger than .25 mA test interval points.
- (4) Using data points taken for slope efficiency above, delta L/delta I shall be calculated for each adjacent pair of points.

Additional laser safety information can be found on the Optek website. See application bulletin #221. Classification is not marked on the device due to space limitations. See package outline for centerline of optical radiance. Operating devices beyond maximum rating may result in hazardous radiation exposure.

OPV300, OPV310, OPV310Y, OPV314, OPV314Y

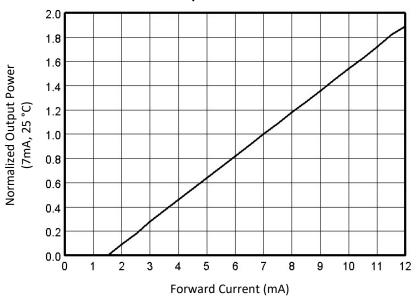
Electrical Specifications

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PAF	RAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
P _{OT}	Total Power Out	OPV300 / OPV310 OPV314	1.50 1.40			mW	I _F = 7 mA
I _{TH}	Threshold Current		0.80		3.00	mA	Note 1
V_{F}	Forward Voltage		1.60		2.20	V	I _F = 7 mA
I_R	Reverse Current				100	nA	V _R = 5 V
R_S	Series Resistance		20		55	ohms	Note 2
ŋ	Slope Efficiency		0.28		0.60	mW/mA	Note 3
	Linearity		0.00				Note 4
λ	Wavelength		840	850	860	nm	
Δλ	Optical Bandwidth				0.85	nm	
θ	Beam Divergence (OPV	300 / OPV310 only)		24		Degree	I _F = 7 mA , FWHM
t _r /t _f	Rise and Fall Time			100		ps	20% to 80%
N_{RI}	Relative Intensity Noise	2		-123		dB/Hz	
ΔI_{TH}	Temp Variance of Thre	shold Current		±1.0		mA	0° - 70° C, Note 1
Δλ/ΔΤ	Temp Coefficient of Wa	avelength		0.06		nm/°C	0° - 70° C, I _F = 7 mA
$\Delta V_F \Delta T$	Temperature Coefficier	nt for VF		-2.5		mV/°C	0° - 70° C, I _F = 7 mA
Δŋ/ΔΤ	Temperature Coefficier	nt for Efficiency		-0.5		%/°C	0° - 70° C, Note 3
Photodiod	e Electrical Characteristi	ics (OPV310/OPV314 series)					
I_{RPD}	Reverse Current, photo	diode			30	nA	V _R = 5 V
I _{M1}	Monitor Current	OPV310 OPV314	30 40			μΑ	I _F = 7 mA, V _R = 5 V
I _{M2}	Monitor Current	OPV310 OPV314	40 45			μΑ	P _O = 2 mW, V _R = 5 V

NOTES:

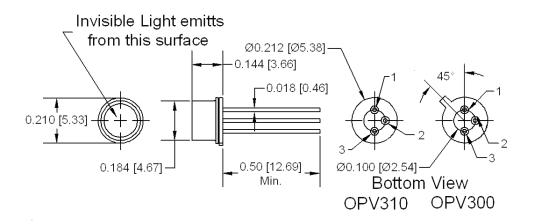
- (1) Threshold Current is based on the two line intersection method specified in Telcordia GR-468-Core. Line 1 from 4 mA to 6 mA. Line 2 from 0 mA to 0.5 mA.
- (2) Series Resistance is the slope of the Voltage-Current line from 5 to 8 mA.
- (3) Slope efficiency, is the slope of the best fit LI line from 5 mA to 8 mA using no larger than .25 mA test interval points.
- (4) Using data points taken for slope efficiency above, delta L/delta I shall be calculated for each adjacent pair of points.
- (5) ESD Class 1

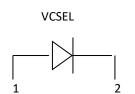

Rev C 7/2018 Page 3

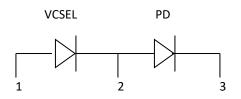
OPV300, OPV310, OPV310Y, OPV314, OPV314Y

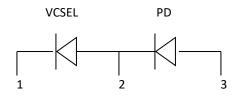
Performance

Normalized Output Power vs. Forward Current


Rev C 7/2018 Page 4

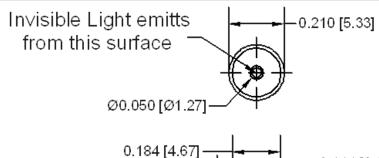

OPV300, OPV310, OPV310Y, OPV314, OPV314Y

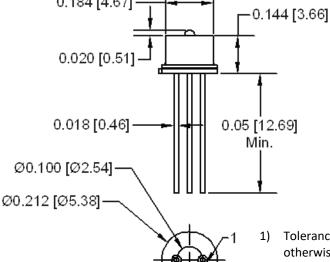



Performance

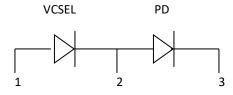
OPV300 & OPV310

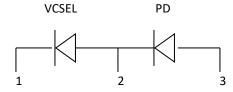
	OPV300
Pin	Connection
1	VCSEL Anode
2	VCSEL Cathode
3	No Connection


OPV310		
Pin	Connection	
1	VCSEL Anode	
2	VCSEL Cathode/PD Anode	
3	PD Cathode	


OPV310Y		
Pin	Connection	
1	VCSEL Cathode	
2	VCSEL Anode/PD Cathode	
3	PD Anode	

OPV300, OPV310, OPV310Y, OPV314, OPV314Y


OPV314



- Tolerances are ±0.005 unless otherwise specified
- 2) Dimensions in inches [mm]

Bottom View

OPV314		
Pin	Connection	
1	VCSEL Anode	
2	VCSEL Cathode/PD Anode	
3	PD Cathode	

OPV314Y		
Pin	Connection	
1	VCSEL Cathode	
2	VCSEL Anode/PD Cathode	
3	PD Anode	

Rev C 7/2018 Page 6