# General Note TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is

considered accurate at time of going to print.

# **Hi-Reliability Optically Coupled Isolator**

## JANTX/JANTXV 4N47 JANTX/JANTXV 4N48 [A] JAN/JANTX/JANTXV 4N49 [A]

### Features:

- TO-78 hermetically sealed package
- High current transfer ratio
- 1 kV electrical isolation
- Base contact provided for conventional transistor biasing
- JAN, JANTX and JANTXV devices processed to MIL-PRF-19500
- Patent No. 4124860

### **Description:**

Each isolator in this series consists of an infrared emitting diode and a NPN silicon phototransistor, which are mounted in a hermetically sealed TO-78 package. Devices are designed for military and/or harsh environments. The suffix letter "A" denotes the collector is electrically isolated from the case.

*The JAN / JANTX / JANTXV 4N47, 4N47A, 4N48, 4N48A, 4N49, and 4N49A devices are processed to MIL-PRF-19500/548.* This series of 4N products are JEDEC registered, DSCC qualified.

Please contact your local representative for more information.

### **Applications:**

- High-voltage isolation between input and output
- Electrical isolation in dirty environments
- Industrial equipment
- Medical equipment
- Office equipment

| Ordering Information                 |                           |                                  |                                   |                             |
|--------------------------------------|---------------------------|----------------------------------|-----------------------------------|-----------------------------|
| Part<br>Number                       | Isolation<br>Voltage (kV) | I <sub>F</sub> (mA)<br>Typ / Max | V <sub>CE</sub><br>(Volts)<br>Max | Processing<br>MIL-PRF-19500 |
| JAN4N47 or JAN4N47A (Obsolete)       |                           |                                  |                                   |                             |
| JANTX4N47 or JANTX4N47A (Obsolete)   |                           |                                  |                                   |                             |
| JANTXV4N47 or JANTXV4N47A (Obsolete) |                           |                                  |                                   |                             |
| JAN4N48 or JAN4N48A (Obsolete)       |                           |                                  |                                   |                             |
| JANTX4N48 or JANTX4N48A              | 1                         | 1/40                             | 40                                | 548                         |
| JANTXV4N48 or JANTXV4N48A (Obsolete) |                           |                                  |                                   |                             |
| JAN4N49 or JAN4N49A                  |                           |                                  |                                   |                             |
| JANTX4N49 or JANTX4N49A              |                           |                                  |                                   |                             |
| JANTXV4N49 or JANTXV4N49A (Obsolete) |                           |                                  |                                   |                             |





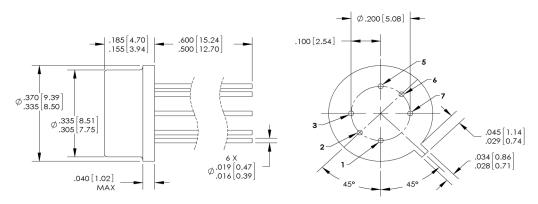
# **Hi-Reliability Optically Coupled Isolator**

## JANTX/JANTXV 4N47 JANTX/JANTXV 4N48 [A] JAN/JANTX/JANTXV 4N49 [A]

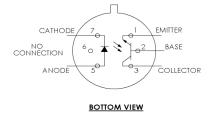


#### Absolute Maximum Ratings (T<sub>A</sub> = 25° C unless otherwise noted)

| Storage Temperature Range                                                                   | -55° C to +150° C          |
|---------------------------------------------------------------------------------------------|----------------------------|
| Operating Temperature Range                                                                 | -55° C to +125° C          |
| Input-to-Output Isolation Voltage                                                           | ± 1.00 kVDC <sup>(1)</sup> |
| Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron] | 260° C <sup>(2)</sup>      |


#### Input Diode

| Forward DC Current (65° C or below) | 40 mA                |
|-------------------------------------|----------------------|
| Reverse Voltage                     | 2 V                  |
| Power Dissipation                   | 60 mW <sup>(3)</sup> |
| Output Phototransistor:             |                      |
| Continuous Collector Current        | 50 mA                |


| Continuous Collector Current | 50 MA                 |  |
|------------------------------|-----------------------|--|
| Collector-Emitter Voltage    | 40 V                  |  |
| Collector-Base Voltage       | 45 V                  |  |
| Emitter-Base Voltage         | 7.0 V                 |  |
| Power Dissipation            | 300 mW <sup>(4)</sup> |  |

Notes:

- 1. Measured with input leads shorted together and output leads shorted together.
- 2. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
- 3. Derate linearly 1.0 mW/° C above 65° C.
- 4. Derate linearly 3.0 mW/° C above 25° C.



#### DIMENSIONS ARE IN INCHES [MIM]



| Pin # | Function  | Pin # | Function |
|-------|-----------|-------|----------|
| 3     | Collector | 5     | Anode    |
| 2     | Base      | 6     | Open     |
| 1     | Emitter   | 7     | Cathode  |

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

TT Electronics | OPTEK Technology 2900 E. Plano Pkwy, Plano, TX 75074 | Ph: +1 972 323 2200 www.ttelectronics.com | sensors@ttelectronics.com

# **Hi-Reliability Optically Coupled Isolator**

## JANTX/JANTXV 4N47 JANTX/JANTXV 4N48 [A] JAN/JANTX/JANTXV 4N49 [A]



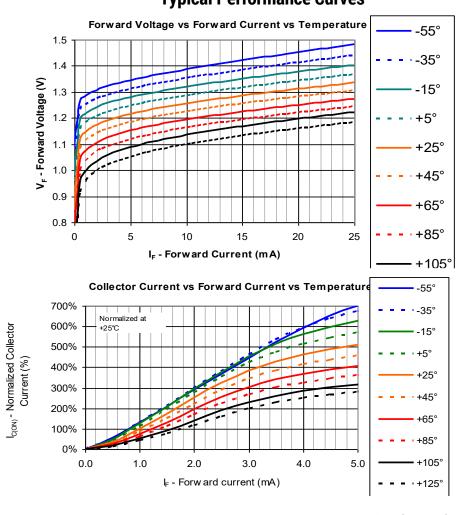
### Electrical Characteristics (T<sub>A</sub> = 25° C unless otherwise noted)

| SYMBOL                           | PARAMETER                                                                                                                               | MIN                  | ТҮР         | МАХ                  | UNITS | TEST CONDITIONS                                                                                                                                                                                                                                                                      |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|----------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nput Dioc                        | de                                                                                                                                      |                      |             |                      |       |                                                                                                                                                                                                                                                                                      |
| V <sub>F</sub>                   | Forward Voltage                                                                                                                         | 0.80<br>1.00<br>0.70 | -<br>-<br>- | 1.50<br>1.70<br>1.30 | V     | $ \begin{split} I_F &= 10.0 \text{ mA} \\ I_F &= 10.0 \text{ mA},  \text{T}_\text{A} = -55^\circ \text{ C}^{(1)} \\ I_F &= 10.0 \text{ mA},  \text{T}_\text{A} = 100^\circ \text{ C}^{(1)} \end{split} $                                                                             |
| I <sub>R</sub>                   | Reverse Current                                                                                                                         | -                    | -           | 100                  | μA    | V <sub>R</sub> = 2.0 V                                                                                                                                                                                                                                                               |
| Output Ph                        | nototransistor                                                                                                                          |                      |             |                      |       |                                                                                                                                                                                                                                                                                      |
| V <sub>(BR)CEO</sub>             | Collector-Emitter Breakdown Voltage                                                                                                     | 40                   | -           | -                    | v     | I <sub>C</sub> = 1.0 mA, I <sub>B</sub> = 0, I <sub>F</sub> = 0                                                                                                                                                                                                                      |
| V <sub>(BR)CBO</sub>             | Collector-Base Breakdown Voltage                                                                                                        | 45                   | -           | -                    | v     | $I_{c} = 100 \ \mu A, I_{B} = 0, I_{F} = 0$                                                                                                                                                                                                                                          |
| V <sub>(BR)EBO</sub>             | Emitter-Base Breakdown Voltage                                                                                                          | 7                    | -           | -                    | V     | $I_E = 100 \ \mu A, I_C = 0, I_F = 0$                                                                                                                                                                                                                                                |
| I <sub>C(OFF)</sub> 1            | Collector-Emitter Dark Current                                                                                                          | -                    | -           | 100                  | nA    | V <sub>CE</sub> = 20 V, I <sub>B</sub> = 0, I <sub>F</sub> = 0                                                                                                                                                                                                                       |
| I <sub>C(OFF)</sub> <sup>2</sup> | Collector-Emitter Dark Current                                                                                                          | -                    | -           | 100                  | μA    | $V_{CE} = 20 \text{ V}, \text{ I}_{B} = 0, \text{ I}_{F} = 0, \text{ T}_{A} = 100^{\circ} \text{ C}^{(1)}$                                                                                                                                                                           |
| I <sub>CB(OFF)</sub>             | Collector-Base Dark Current                                                                                                             | -                    | -           | 10                   | nA    | $V_{CB} = 20 V, I_E = 0, I_F = 0$                                                                                                                                                                                                                                                    |
| Coupled                          |                                                                                                                                         | U                    |             |                      |       | 1                                                                                                                                                                                                                                                                                    |
|                                  | On-State Collector Current<br>JAN / JANTX / JANTXV 4N47 [A]                                                                             | 0.50<br>0.70<br>0.50 | -<br>-<br>- | -<br>-               |       | $\begin{split} I_F &= 1.0 \text{ mA, } V_{CE} = 5.0 \text{ V, } I_B = 0 \\ I_F &= 2.0 \text{ mA, } V_{CE} = 5.0 \text{ V, } I_B = 0, \ T_A = -55^\circ \text{ C}^{(1)} \\ I_F &= 2.0 \text{ mA, } V_{CE} = 5.0 \text{ V, } I_B = 0, \ T_A = 100^\circ \text{ C}^{(1)} \end{split}$   |
| I <sub>C(ON)</sub>               | JAN / JANTX / JANTXV 4N48 [A]                                                                                                           | 1.00<br>1.40<br>1.00 | -<br>-<br>- | 5<br>-<br>-          | mA    | $\begin{split} I_F &= 1.0 \text{ mA},  V_{CE} = 5.0 \text{ V},  I_B = 0 \\ I_F &= 2.0 \text{ mA},  V_{CE} = 5.0 \text{ V},  I_B = 0,  T_A = -55^\circ \text{ C}^{(1)} \\ I_F &= 2.0 \text{ mA},  V_{CE} = 5.0 \text{ V},  I_B = 0,  T_A = 100^\circ \text{ C}^{(1)} \end{split}$     |
|                                  | JAN / JANTX / JANTXV 4N49 [A]                                                                                                           | 2.00<br>2.80<br>2.00 | -<br>-<br>- | 10<br>-<br>-         |       | $\begin{split} I_F &= 1.0 \text{ mA}, \ V_{CE} &= 5.0 \text{ V}, \ I_B &= 0 \\ I_F &= 2.0 \text{ mA}, \ V_{CE} &= 5.0 \text{ V}, \ I_B &= 0, \ T_A &= -55^\circ \ C^{(1)} \\ I_F &= 2.0 \text{ mA}, \ V_{CE} &= 5.0 \text{ V}, \ I_B &= 0, \ T_A &= 100^\circ \ C^{(1)} \end{split}$ |
| I <sub>CB(ON)</sub>              | On-State Collector Base                                                                                                                 | 30                   | -           | -                    | μΑ    | $V_{CB} = 5 \text{ V}, \text{ I}_{E} = 0, \text{ I}_{F} = 10 \text{ mA}$                                                                                                                                                                                                             |
| V <sub>CE(SAT)</sub>             | Collector-Emitter Saturation Voltage<br>JAN / JANTX / JANTXV 4N47 [A]<br>JAN / JANTX / JANTXV 4N48 [A]<br>JAN / JANTX / JANTXV 4N49 [A] | -<br>-               | -<br>-<br>- | 0.30<br>0.30<br>0.30 | V     | $I_{F} = 2.0 \text{ mA, } I_{C} = 0.5 \text{ mA, } I_{B} = 0$ $I_{F} = 2.0 \text{ mA, } I_{C} = 1.0 \text{ mA, } I_{B} = 0$ $I_{F} = 2.0 \text{ mA, } I_{C} = 2.0 \text{ mA, } I_{B} = 0$                                                                                            |
| ${\sf H}_{\sf FE}$               | DC Current Gain                                                                                                                         | 100                  | -           | -                    | V     | $V_{\text{CE}}$ = 5.0 V , $I_{\text{C}}$ = 10.0 mA, $I_{\text{F}}$ = 0 mA                                                                                                                                                                                                            |
| R <sub>IO</sub>                  | Resistance (Input-to-Output)                                                                                                            | 10 <sup>11</sup>     | -           | -                    | Ω     | V <sub>I-0</sub> = ± 1000 VDC <sup>(3)</sup>                                                                                                                                                                                                                                         |
| CIO                              | Capacitance (Input-to-Output)                                                                                                           | -                    | -           | 5                    | pF    | V <sub>I-0</sub> = 0 V, f = 1.0 MHz <sup>(3)</sup>                                                                                                                                                                                                                                   |
| t <sub>r,</sub> t <sub>f</sub>   | Rise and Fall Time                                                                                                                      | -                    | -           | 20                   | μs    | $V_{CC}$ = 10.0 V, $I_{F}$ = 5.0 mA, $R_{L}$ = 100 $\Omega$                                                                                                                                                                                                                          |

Notes:

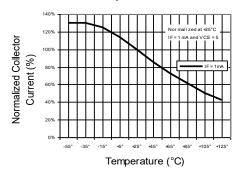
- 1. Guaranteed but not tested.
- 2. Sample tested, LTPD = 10.
- 3. Measured with input leads shorted together and output leads shorted together.

General Note

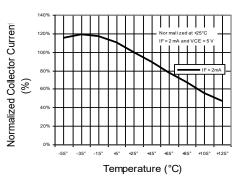

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

TT Electronics | OPTEK Technology 2900 E. Plano Pkwy, Plano, TX 75074 | Ph: +1 972 323 2200 www.ttelectronics.com | sensors@ttelectronics.com

# **Hi-Reliability Optically Coupled Isolator**


JANTX/JANTXV 4N47 JANTX/JANTXV 4N48 [A] JAN/JANTX/JANTXV 4N49 [A]






## **Typical Performance Curves**





Normalized Collector Current Vs Temperature



#### General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

TT Electronics | OPTEK Technology 2900 E. Plano Pkwy, Plano, TX 75074 | Ph: +1 972 323 2200 www.ttelectronics.com | sensors@ttelectronics.com