PIN Silicon Photodiode
OP993, OP999

Features:
- Choice of TO-18 (OP993) or T-1¾ package (OP999)
- Small package style ideal for space-limited applications
- Linear response vs. irradiance
- Fast switching time
- Choice of narrow or wide receiving angle

Description:
Each OP993 and OP999 device consists of a PIN silicon photodiode molded in a dark blue injection molded shell package that provides excellent optical and mechanical axis alignment, optical lens surface, control of chip placement and consistency of the outside package dimensions.

OP993 has a TO-18 package style and a wide receiving angle that provides excellent on-axis coupling. OP999 has a T-1¾ package style and a narrow receiving angle that provides excellent on-axis coupling.

Both devices are 100% production tested for close correlation with OPTEK GaAlAs emitters.

Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

Applications:
- Non-contact reflective object sensor
- Assembly line automation
- Machine automation
- Machine safety
- End of travel sensor
- Door sensor

<table>
<thead>
<tr>
<th>Ordering Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
</tr>
<tr>
<td>OP993</td>
</tr>
<tr>
<td>OP999</td>
</tr>
</tbody>
</table>

CONTAINS POLYSULFONE
To avoid stress cracking, we suggest using ND Industries’ Vibra-Tite for thread-locking. Vibra-Tite evaporates fast without causing structural failure in OPTEK’S molded plastics.

General Note
TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics’ own data and is considered accurate at time of going to print.

© TT electronics plc
PIN Silicon Photodiode

OP993, OP999

Electrical Specifications

Absolute Maximum Ratings ($T_A = 25^\circ C$ unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Breakdown Voltage</td>
<td></td>
<td></td>
<td>60 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage & Operating Temperature Range</td>
<td></td>
<td></td>
<td>-40°C to +100°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Soldering Temperature</td>
<td></td>
<td></td>
<td>260°C</td>
<td></td>
<td>[1/16 inch (1.6 mm) from the case for 5 sec. with soldering iron]</td>
</tr>
<tr>
<td>Reverse Breakdown Voltage</td>
<td></td>
<td></td>
<td>60 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td></td>
<td></td>
<td>100 mW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical Characteristics ($T_A = 25^\circ C$ unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_L</td>
<td>Reverse Light Current</td>
<td></td>
<td></td>
<td>12.5</td>
<td>µA</td>
<td>$V_R = 5 V$, $E_E = 1.7 mW/cm^2$ (3)</td>
</tr>
<tr>
<td>OP993</td>
<td></td>
<td>6.5</td>
<td></td>
<td>28.5</td>
<td></td>
<td>$V_R = 5 V$, $E_E = 0.25 mW/cm^2$ (3)</td>
</tr>
<tr>
<td>OP999</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_D</td>
<td>Reverse Dark Current</td>
<td>1</td>
<td></td>
<td>60 nA</td>
<td></td>
<td>$V_R = 30 V$, $E_E = 0$ (4)</td>
</tr>
<tr>
<td>V_{BR}</td>
<td>Reverse Breakdown Voltage</td>
<td>60</td>
<td></td>
<td></td>
<td>V</td>
<td>$I_R = 100 \mu A$</td>
</tr>
<tr>
<td>V_F</td>
<td>Forward Voltage</td>
<td>1.2</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>C_T</td>
<td>Total Capacitance</td>
<td>4</td>
<td></td>
<td></td>
<td>pF</td>
<td>$V_R = 20 V$, $E_E = 0$, $f = 1.0 MHz$</td>
</tr>
<tr>
<td>t_R</td>
<td>Rise Time</td>
<td>5</td>
<td></td>
<td></td>
<td>ns</td>
<td>$V_R = 20 V$, $\lambda = 850$ nm, $R_L = 50 \Omega$</td>
</tr>
<tr>
<td>t_F</td>
<td>Fall Time</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum of 20 grams force may be applied to leads when soldering.
2. Derate linearly 1.67 mW/°C above 25°C.
3. Light source is an unfiltered GaAlAs emitting diode operating at peak emission wavelength of 890 nm and E_{APT} of 1.7 mW/cm² for OP993 and 0.25 mW/cm² for OP999 average within a 0.25” diameter aperture.
4. This dimension is held to within ±0.005” on the flange edge and may vary up to ±0.020” in the area of the leads.
PIN Silicon Photodiode
OP993, OP999

Coupling Characteristics OP993 and OP293

- \(V_R = 5 \text{ V} \)
- \(I_F = 20 \text{ mA} \)

Light Current vs. Irradiance

- \(V_R = 5 \text{ V} \)
- \(T_A = 25^\circ \text{ C} \)
- \(\lambda = 890 \text{ nm} \)

Light Current vs. Angular Displacement

- Test Conditions:
 - \(\lambda = 935 \text{ nm} \)
 - \(V_R = 5 \text{ V} \)
 - Distance Lens to Lens = 1.5 inches

General Note:
TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.
PIN Silicon Photodiode
OP993, OP999

Coupling Characteristics
OP999 and OP299

Light Current vs. Irradiance

Distance Between Lens Tips - inches

Test Conditions:
λ = 935 nm
VR = 5 V

Normalized Current

θ - Angular Displacement - Deg.