Features:
- High speed, low capacitance
- Popular ST® style receptacle
- Pre-tested with fiber to assure performance
- Component pre-mounted and ready to use
- 35MHz operation minimum

Description:
The OPF422 is a low noise silicon PIN photodiode mounted in a low cost package for fiber optic applications. It offers fast response at moderate bias and is compatible with LED and laser diode sources in the 800-1000 nm wavelength region. Low capacitance improves signal to noise performance in typical short haul LAN applications.

The OPF422 is designed to be compatible with multimode optical fibers from 50/125 to 200/300 microns.

Applications:
- Industrial Ethernet equipment
- Copper-to-fiber media conversion
- Intra-system fiber optic links
- Video surveillance systems

Features:
- High speed, low capacitance
- Popular ST® style receptacle
- Pre-tested with fiber to assure performance
- Component pre-mounted and ready to use
- 35MHz operation minimum

DIMENSIONS ARE IN: [MILLIMETERS] INCHES

General Note
TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

© TT electronics plc

OPTEK Technology, Inc.
1645 Wallace Drive, Carrollton, TX 75006 | Ph: +1 972 323 2200
www.optekinc.com | www.ttelectronics.com
Issue D 07/2018 Page 1
Fiber Optic Detector
OPF422

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature Range</td>
<td></td>
<td></td>
<td>-55° C to +125° C</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td></td>
<td></td>
<td>-40° C to +100° C</td>
</tr>
<tr>
<td>Lead Soldering Temperature</td>
<td></td>
<td></td>
<td>260° C</td>
</tr>
<tr>
<td>Continuous Power Dissipation</td>
<td></td>
<td></td>
<td>200 mW</td>
</tr>
<tr>
<td>Maximum Reverse Voltage</td>
<td></td>
<td></td>
<td>100 VDC</td>
</tr>
</tbody>
</table>

Electrical Characteristics (T_A = 25° C unless otherwise noted)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Responsivity</td>
<td>0.45</td>
<td>0.55</td>
<td>A/W</td>
<td>V_R = 5.0V; 50/125µm fiber; (\lambda = 850\text{nm})</td>
<td></td>
</tr>
<tr>
<td>I_D</td>
<td>Dark Current</td>
<td>0.1</td>
<td>5.0</td>
<td>nA</td>
<td>V_R = 5.0V</td>
<td></td>
</tr>
<tr>
<td>(\lambda_p)</td>
<td>Peak Response Wavelength</td>
<td>905</td>
<td>nm</td>
<td></td>
<td>V_R = 15V; R_L = 50Ω , 10%-90%</td>
<td></td>
</tr>
<tr>
<td>t_r</td>
<td>Output Rise Time</td>
<td>6.0</td>
<td>ns</td>
<td></td>
<td>V_R = 15V</td>
<td></td>
</tr>
<tr>
<td>C_T</td>
<td>Total Capacitance</td>
<td>3.0</td>
<td>pF</td>
<td></td>
<td>V_R = 20V</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Maximum of 5 seconds with soldering iron. Duration can be extended to 10 seconds when flow soldering. RMA flux is recommended.
2. De-rate linearly at 2.13mW/°C above 25°C.
Performance

![Dark Current vs. Temperature](image1)

![Rise Time vs. Bias Voltage](image2)

![Dark Current vs. Bias Voltage](image3)

![Capacitance vs. Bias Voltage](image4)