Resistors

High Pulse Double-Sided Chip Resistors

HDSC Series

- Two parallel resistance elements in a single chip
- Excellent pulse withstand performance
- Enhanced working voltage
- Enhanced power rating
- Anti-sulphur

Electrical Data

<table>
<thead>
<tr>
<th></th>
<th>0805</th>
<th>1206</th>
<th>2010</th>
<th>2512</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power @70°C</td>
<td>0.25</td>
<td>0.33</td>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td>2 second overload power @25°C</td>
<td>1.6</td>
<td>2.1</td>
<td>4.7</td>
<td>9.4</td>
</tr>
<tr>
<td>Short pulse performance</td>
<td>See graphs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance range</td>
<td>ohms</td>
<td>OR5 to 1M0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerance</td>
<td>%</td>
<td>5, 10, 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEV</td>
<td>V</td>
<td>150</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>TCR</td>
<td>ppm/°C</td>
<td><10R:300 ≥10R:100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>°C</td>
<td>-55 to +155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dielectric withstand voltage</td>
<td>V</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Impedance</td>
<td>°C/W</td>
<td>210</td>
<td>160</td>
<td>80</td>
</tr>
<tr>
<td>Pad & trace area for rated power*</td>
<td>mm²</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Values</td>
<td></td>
<td></td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

*Recommended minimum pad & adjacent trace area for each termination for rated power dissipation on FR4 PCB

Physical Data

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>W</th>
<th>T max</th>
<th>A</th>
<th>B min</th>
<th>C</th>
<th>Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0805</td>
<td>2.0±0.15</td>
<td>1.25±0.15</td>
<td>0.7</td>
<td>0.3±0.15</td>
<td>0.9</td>
<td>0.3±0.1</td>
<td>5.0</td>
</tr>
<tr>
<td>1206</td>
<td>3.2±0.2</td>
<td>1.6±0.2</td>
<td>0.7</td>
<td>0.4±0.2</td>
<td>1.7</td>
<td>0.4±0.15</td>
<td>10</td>
</tr>
<tr>
<td>2010</td>
<td>5.1±0.3</td>
<td>2.5±0.2</td>
<td>0.8</td>
<td>0.6±0.3</td>
<td>3.0</td>
<td>0.6±0.25</td>
<td>42</td>
</tr>
<tr>
<td>2512</td>
<td>6.5±0.3</td>
<td>3.2±0.2</td>
<td>0.8</td>
<td>0.6±0.3</td>
<td>4.4</td>
<td>0.6±0.25</td>
<td>65</td>
</tr>
</tbody>
</table>

Construction

Thick film resistor material, overglaze and organic protection are screen printed on a 96% alumina substrate. Wrap-around terminations have an electroplated nickel barrier and solderable coating; this ensures excellent ‘leach’ resistance properties and solderability.

Marking

Components are not marked. Reels are marked with type, value, tolerance, date code and quantity.

Solvent Resistance

The body protection is resistant to all normal industrial cleaning solvents suitable for printed circuits.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability.

All information is subject to TT Electronics’ own data and is considered accurate at time of going to print.

© TT Electronics plc
Performance Data

<table>
<thead>
<tr>
<th>Resistance to overload: 6.25 x rated power for 2 seconds</th>
<th>ΔR%</th>
<th>Maximum</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry heat: 1000 hours at 155°C</td>
<td>ΔR%</td>
<td>0.2</td>
<td>0.05</td>
</tr>
<tr>
<td>Temperature rapid change</td>
<td>ΔR%</td>
<td>0.25</td>
<td>0.05</td>
</tr>
<tr>
<td>Resistance to sulphur-bearing gas ASTM-B-809</td>
<td>ΔR%</td>
<td>0.25</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Pulse Performance Data

Lightning Surge

Resistors are tested in accordance with IEC 60 115-1 using both 1.2/50μs and 10/700μs pulse shapes. 10 pulses are applied. The limit of acceptance is a shift in resistance of less than 1% from the initial value.

1.2/50μs Lightning Strike

5 pulses applied at 12s intervals

10/700μs Lightning Strike

10 pulses applied at 60s intervals

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics’ own data and is considered accurate at time of going to print.

© TT Electronics plc
Single Pulse

The single impulse graph is the result of 50 impulses of rectangular shape applied at one-minute intervals. The limit of acceptance was a shift in resistance of less than 1% from the initial value.

Continuous Load Due to Repetitive Pulses

The continuous load graph was obtained by applying repetitive rectangular pulses where the pulse period was adjusted so that the average power dissipated in the resistor was equal to its rated power at 70°C. Again the limit of acceptance was a shift in resistance of less than 1% from the initial value.
High Pulse Double-Sided Chip Resistors
HDSC Series

Thermal Performance Data

Packaging

0805 and 1206 resistors are supplied on 8mm carrier tape and 2010 and 2512 resistors are supplied on 12 mm carrier tape, all on 7 inch reels as per IEC 286-3.

Application Notes

HDSC resistors are ideally suited for handling by automatic methods due to their rectangular shape and the small dimensional tolerances. Electrical connection to a ceramic substrate or to a printed circuit board can be made by reflow or wave soldering of wrap-around terminations.

Wrap-around terminations provide good leach properties and ensure reliable contact. Due to the robust construction, the HDSC can be immersed in the solder bath for 30 seconds at 260°C. This enables the resistor to be mounted on one side of a printed circuit board and wire-leaded components applied on the other side. HDSC is compatible with typical Pb-free soldering materials and temperature profiles.

HDSC resistors themselves can operate at a maximum temperature of 155°C. For soldered resistors, the joint temperature should not exceed 110°C. This condition is met when the stated power levels at 70°C and recommended pad and trace areas are used. Pad and trace area is defined as the total area of the solder pad plus all copper trace within two squares of the edge of the solder pad. Allowance should be made if smaller areas of copper are used.

Ordering Procedure

Example: HDSC2512-10KJT18 (HDSC2512, 10 kilohms ±5%, Pb-free)

<table>
<thead>
<tr>
<th>1</th>
<th>Type</th>
<th>2</th>
<th>Size</th>
<th>3</th>
<th>Value</th>
<th>4</th>
<th>Tolerance</th>
<th>5</th>
<th>Termination & Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDSC</td>
<td>0805</td>
<td>E24 = 3/4 characters</td>
<td>R = ohms</td>
<td>K = kilohms</td>
<td>M = megohms</td>
<td>J = ±5%</td>
<td>Standard Pb-free finish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K = ±10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M = ±20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2512</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0805</td>
<td>3000/reel standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T18</td>
<td>2512</td>
<td>1800/reel standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All sizes</td>
<td>1000/reel available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td>All sizes</td>
<td>Standard quantities as for Pb-free</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability.
All information is subject to TT Electronics’ own data and is considered accurate at time of going to print.

© TT Electronics plc