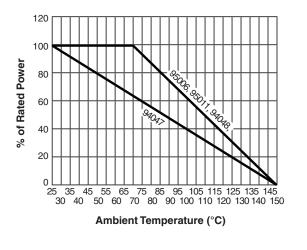
Resistors

High Reliability Surface Mount Resistor

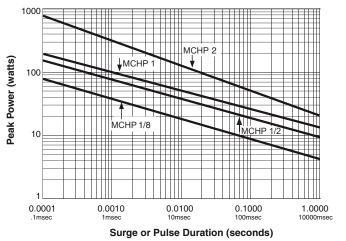
MCHP Series

- DSCC Approved
- Excellent surge capability
- Reliable Metal Glaze™ technology
- Superb solderability reflow and wave
- Operating temperature -55°C to +150°C
- Minimum board real estate requirements
- Established SPC and continuous improvement programs


The MCHP High Reliability Surface Mount Resistors are in compliance to DSCC drawings as listed below and are supplied in accordance to the requirements of MIL-PRF-55342. Under this specification, all resistors are subjected to "Thermal Shock". Samples are selected from each lot and tested to "TCR", "STOL", "Terminal adhesion", "Solderability", and "Visual" to ensure the lot is in conformance to specified requirements.

Electrical Data

Size Code ¹	Industry Footprint	IRC Type	DSCC Drawing	Rated Power ² (watts)	Working Voltage ³	Maximum Voltage	Resistance Range (ohms)	Tolerance (±%)	TCR (ppm/°C)
В	1206	MCHP 1/8	95011 ⁴	0.125 @ 70°C	200	400	0.1 to 1.0M	1, 2, 5	100
D	2010	MCHP 1/2	94048	0.5 @ 70°C	300	600	0.1 to 1.6M	1, 2, 5	100
F	2512	MCHP 1	95006⁵	1.0 @ 70°C	350	700	0.1 to 2.2M	1, 2, 5	100
Н	3610	MCHP 2	94047	2.0 @ 25°C	500	1000	0.2 to 2.2M	1, 2, 5	100


¹ See page 8 for product dimensions, recommended solder pads, and standard packaging. ² For operation above 70°C, use power derating curve. ³ Not to exceed $\sqrt{P \times R}$ ⁴ Formerly 85083 ⁵ Formerly 87037

Power Derating Curve

Repetitive Surge Curve

OBSOLETE

Note: Use for repetitive pulses where the average power dissipation is not to exceed the component rating at 70°C. Surge handling capacity for low-repetitive surges may be significantly greater than shown above. Contact factory for recommendations.

BI Technologies IRC

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

© TT Electronics plc

Welwyn

emperature

dielectric coating

Metal Glaze[™] thick film element fired at 1000°C to solid

ceramic substrate

Solder over nickel barrier

MCHP Series

Environmental Data

Characteristics	Maximum Change	Test Method		
Temperature Coefficient	±100 ppm/°C	MIL-R-55342E Par 4.7.9 (-55°C + 125°C)		
Thermal Shock	±0.5% + 0.01 ohm	MIL-R-55342E Par 4.7.3 (-65°C + 150°C, 5 cycles)		
Low Temperature Operation	±0.25% + 0.01 ohm	MIL-R-55342E Par 4.7.4 (-65°C @ working voltage)		
Short Time Overload	±0.25% + 0.01 ohm ±1% for R>100K ohm	MIL-R-55342E Par 4.7.5 2.5 x $\sqrt{P x R}$ for 5 seconds		
High Temperature Exposure	±0.5% + 0.01 ohm	MIL-R-55342E Par 4.7.6 (+150°C for 100 hours)		
Resistance to Bonding Exposure	±0.25% + 0.01 ohm	MIL-R-55342E Par 4.7.7 (Reflow soldered to board at 260°C for 10 seconds)		
Solderability	95% minimum coverage	MIL-STD-202, Method 208 (245°C for 5 seconds)		
Moisture Resistance	±0.5% 0.01 ohm	MIL-R-55342E Par 4.7.8 (10 cycles, total 240 hours)		
Life Test	±0.5% 0.01 ohm	MIL-R-55342E Par 4.7.10 (2000 hours at 70°C intermittent)		
Terminal Adhesion Strength	±1% + 0.01 ohm no mechanical damage	1200 gram push from underside of mounted chip for 60 seconds		
Resistance to Board Bending	±1% + 0.01 ohm no mechanical damage	Chip mounted in center of 90mm long board, deflected 5mm so as to exert pull on chip contacts for 10 seconds		

OBSOLETE

Ordering Data

Sample Part No	- 2213	F	13
DSCC Drawing Number			:
Resistance Value (100 ohms and greater - First 3 significant digits plus 4th digit multiplie Example: 100 ohms = 1000, 1000 ohms = 1001, 150,000 ohms = 150 (Less than 100 ohms - "A" is used to designate decimal) Example: 51 ohms = 51R0, 1.6 ohm = 1R60, 0.25 ohms = R250	er)		•
Tolerance (F = 1.0%; G = 2.0%; J = 5.0%)	•••••	•••	-
	• • • • • • • • •	••••	

(BLK = Bulk, 7 = 7" Reel, 13 = 13" Reel)

*Note: these codes may be used to state required packaging option, but they are not part of the DSCC part number.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print. BI Technologies IRC Welwyn