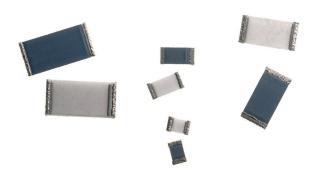


Circuit Protection Application Note **Resistors**

BI Technologies IRC Welwyn



WA Y

Resistors

Application Note

Today's electronic circuits need reliable protection to operate amidst the potential hazards of inrush currents, high voltage surges and other overload conditions. TT Electronics resistors have kept circuits safe for more than 80 years, and TT Electronics continues to offer the industry's most comprehensive range of circuit protection resistors.

In addition to offering standard components, TT Electronics has worked closely with designers to custom build resistors that are capable of handling high energy pulses. These components may also be designed to fuse, if required, in a controlled and safe manner under fault conditions.

This unique performance is made possible by:

- Selecting the optimum resistor technology necessary to match the performance requirements.
- Utilising a specially designed coating system formulated to aid fusing under fault conditions.
- Utilising a flameproof protection system to eliminate flame during fusing.

Whether you're designing circuit protection for telecommunications, computers, consumer electronics or office equipment, TT Electronics has the right resistor for your application.

Resistor selected /designed to customer specifications

Available technologies

- Metal Film
- Metal Oxide
- Wirewound
- Surface Mount

Tripping Belay

Detector Winding

Application Note

1. RCD Test Resistors

One specialist application for protection resistors is in RCD (Residual Current Device) or GFD (Ground Fault Detector) protection circuits, where these resistors form part of the test circuit as shown in Figure 1.

In normal operation, if the RCD detects a current imbalance it will trip a relay causing an open circuit. The purpose of the test circuit is to create this imbalance and cause the relay to operate.

The resistor performs two functions in the test circuit; firstly it creates the load to produce the current imbalance. Secondly the resistor must withstand the initial current, to allow the relay to operate, but then if the relay fails to open the circuit after a given time the resistor must fuse safely.

Typically the relay will operate in 30 to 40 milliseconds. If it fails to do so the resistor will fuse safely in 450ms to 2 seconds. The value of this resistor will depend upon the required characteristics of the circuit. Pulse withstanding capability is typically 4000 volts with a 1.2/50-microsecond waveshape and the resistor can absorb up to 50 joules depending upon the value.

The resistor will fuse safely with 330 watts applied. The WMO-S series of metal oxide resistors has proved very effective in this application,

Power Metal Oxide Film Resistors

WMO-S Series

- Small size for power rating
- Can replace carbon composition in many pulse handling applications
- Flameproof protection

Q

R

N

due to their energy handling capabilities and overload withstand

Special versions of the WMO-S series have also been produced, as

detailed in the example above, which incorporate fusing capabilities

ability.

Test Button

Welwyr

Resisto

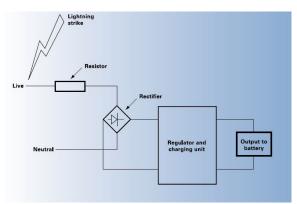
to provide fail safe protection.

Electrical Data

		WMO ¹ / ₂ S	WMO1S	WMO2S	WMO3S	WMO5S	WM07S		
Power Rating @70%	watts	1/ ₂	1	2	3	5	7		
Resistance Range	ohms	10R-100K	10R-120K	10	R-150K	10R-180K	20R-150K		
Limiting element voltage	volts	250	300	350		500	750		
TCR (25 to 70 °C)	ppm/ °C	350							
Isolation Voltage	volts	250	350			500	750		
Resistance tolerance	%	5							
Standard Values		E24							
Thermal Impedance	°C/watt	125	105	75	63	42	36		
Ambient temperature rang	-55 to +155								

http://www.ttelectronics.com/sites/default/files/resistors-datasheets/WMO-S.pdf

Application Note


2. Inrush Current

Despite technological advances one problem that has never been fully resolved is that of 'inrush' current. This phenomenon, caused by initial capacitor charging surges and/or transformer magnetising currents can subject the input circuitry of equipment to currents many times higher than under normal operating conditions albeit for only a short duration. This can result in damage to the components through which this current surge flows and in some cases can result in premature failure. Fuses, traditionally used to protect circuits from such overloads, now have to be specially selected to fail only under specific conditions of current and duration. Some of the solutions designers have used to limit these transients and minimise the problems vary from positive temperature co-efficient resistors right through the spectrum of technology to 'soft-start' techniques to gradually ramp up the supplies. Few of these ever meet the all important criteria of reliability and low cost. Figure 2 shows one such application; a battery charger. In this application the customer required the resistor to withstand an inrush surge, and also a lightning strike.

The lightning strike is usually simulated by either a 1.2/50 microsecond or 10/700 microsecond pulse shape, the number of

pulses and pulse interval are specified by the customer depending upon the application.

An additional feature which is required for this type of circuit is the ability of the resistor to fuse safely should a short circuit occur (for example if the bridge rectifier were to fail short circuit). Typical parts used are ULW Series (UL recognised wirewound) and WP-S Series (wirewound power - small) resistors often with special features to meet specific application requirements. Both of these parts have defined energy handling capabilities. Special versions can be produced to withstand customer defined pulses and/or to fuse during defined conditions of overload.

UL Recognised Wirewound Fusible Resistors

ULW Series

- UL1412 recognised fusible resistors
- Pule withstanding wirewound technology
- UL94-V0 flameproof fusing

10R

Electrical Data

		ULW2	ULW3	ULW4	ULW5				
Power Rating @25°C	watts	2	3	4	5				
5 second overload rating at 25 °C	watts	10	15	20	25				
Resistance Range	ohms	1 to 100							
TCR	ppm/ °C	±200							
Isolation Voltage	volts	250	350	500					
Resistance tolerence	%	5							
Thermal Impedance	°C/watt	110	82	62	54				
Ambient temp range	°C	-55 to +155							

http://www.ttelectronics.com/sites/default/files/resistors-datasheets/ULW.pdf

Resistors

Application Note

Flameproof Cement Wirewound Resistors WP-S Series

- Robust wirewound technology
- UL94-V0 flameproof fusing
- Pulse withstanding version WHS series available

		WP1S	WP2S	WP25S	WP3S	WP4S	WP5S		
Power Rating @25°C	watts	1	2	2.5	3	4 5			
Overload Rating (5s)	watts	5	10	12.5	15	20	25		
Short pulse performance		Available on request							
Resistance Range	ohms	R068 to 430R	R05 to 900R	R05 to 900R	R01 to 2K2	R01 to 10K	R015 to 6K8		
Limiting element voltage	volts	50	50	75	100	100	150		
TCR	ppm/ °C	<1R:350 = 1R: 200							
Isolation Voltage	volts	250 350			350	500			
Resistance tolerence	%		<20R: 5 ≥20	<r10:5 ≥1r10: 1,2, 5</r10:5 	<20R 5 ≥20R: 1, 2, 5				
Standard values		E24 preferred							
Thermal Impedance	°C/watt	140	110	90	82	62	54		
Ambient temp range	°C	-55 to +155							

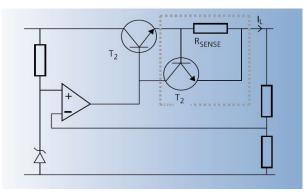
http://www.ttelectronics.com/sites/default/files/resistors-datasheets/WP-S.pdf

Electrical Data

Pulse Withstanding Fusible Flameproof Metal Film Resistors			EMC2
EMC Series	Power rating at 70 °C	watts	2
UL1412 recognised*	Resistance range	ohms	4R7 - 68R
Failsafe 240V mains fusing	TCR pp	om/°C	100
	Isolation Voltage	Volts	500
Good pulse handling capability	Resistance tolerance	%	10, 20
Small size for power rating	Standard values		E12
UL94-V0 flameproof protection	Thermal impedance °C	C/watt	82
*Values 22R and above. UL file number E234469	Ambient temperature rang	ge °C	-55 to +155

http://www.ttelectronics.com/sites/default/files/resistors-datasheets/EMC.pdf

Resistors


Application Note

3. Short Circuit or Overload Protection

Many power supplies incorporate some form of short circuit or overload protection (sometimes called over current protection) in their output stage. Protection in older circuits was often achieved using a simple bimetallic switch in series with the output. However these proved to be inaccurate, slow to react and unreliable in operation. Modern circuits now use an electronic method to monitor the power supply output current and to control the output should a fault occur. A typical example is shown in Figure 3 in the form of a series voltage regulator with constant current limiting (the current limiting section of the circuit is high lighted). The load current (IL) passes through the sense resistor RSENSE and creates a voltage between the base and emitter of transistor T2. When IL reaches a preset maximum value, the voltage drop across RSENSE is sufficient to forward bias the base-emitter junction of T2 causing it to conduct. This diverts the base current from T1 into the collector of T2 so that IL is limited to its maximum value.

The resistor needs to be carefully selected, firstly to give the correct voltage drop for the intended maximum output current and

secondly because the full load current will pass though it. Obviously power ratings will vary with the specific power supply and value selected. TT Electronics can offer a wide range of current sense products. One of the most compact and versatile is the LR series of low value chip resistors. For other options, see our Application Note "Current Sense Resistors" <u>http://www.ttelectronics.com/sites/default/</u> files/download-files/Current-Sense_AN.pdf

Low Value Flat Chip Resistors

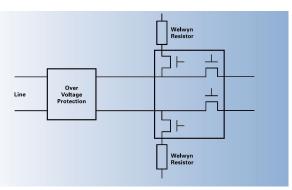
LR Series

- Resistance values down to 0.003 ohms
- Leach resistant solder plated copper wrap around termination
- Low inductance less than 0.2nH

Electrical Data

		LR1206	LR2010	LR2512	LRF3W	
Power Rating @70°C	watts	0.5	1.0	2.0	4	
Resistance Range	ohms		OR003 -	0R003 - 0R1		
Tolerance	%		<oro1:5% td="" ≥of<=""><td colspan="3"><0R004: 5 % ≥0R004: 1, 2, 5 %</td></oro1:5%>	<0R004: 5 % ≥0R004: 1, 2, 5 %		
Number of terminals		2	2	2	2	
Dielectric withstand	volts	200	200	200	200	
TCR	ppm/ °C	≥0R05 : 100	≥0R05 : 100	≥0R05 : 100	≥0R004 : 100	
Temperature rise at rated powe	er °C	40	80	90	100	
Fotal pad & trace area for rated mm2 power at 70 °C		30	100	300	500	
Nominal dimensions L x W		3.20 x 1.63	5.23 x 2.64	6.50 x 3.25	3.25 x 6.50	
Termination style	mm	≤0R025 Flip-chip, >0R025 Normal			Flip-chip	

http://www.ttelectronics.com/sites/default/files/resistors-datasheets/LR.pdf

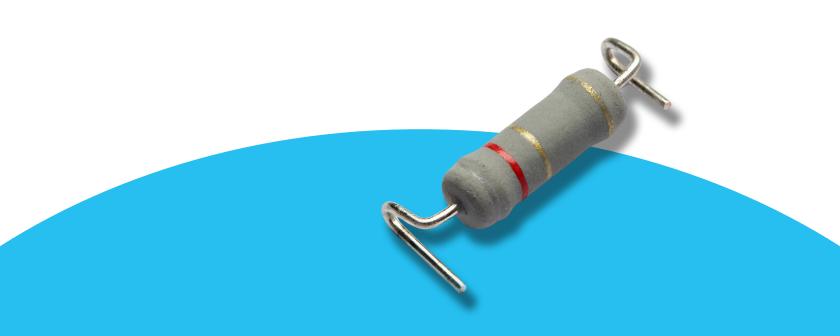

Application Note

4. Telecommunications

Telephone lines can be subjected to a large range of voltage disturbances, many of which can damage switching equipment. This has led to the need for circuit protection against both high voltage transients, usually of short duration due to lightning strikes and overloads of longer duration caused by accidental direct connection to mains power lines.

These two faults are separated into primary and secondary protection. Primary protection handles the high voltage transients, and is usually located within the exchange. Secondary protection is usually built into the equipment to be protected, and deals with both current and voltage limiting. Voltage limiting prevents damage to the equipment and shock hazards, and current limiting prevents damage to wiring and voltage limiters. A typical application circuit is shown in Figure 4 where the resistors are designed for ring signal sending through a solid state relay. The resistors are protected from lightning surge by Over-voltage Protection in the system and the resistors are required to withstand pulse of 15 Watts for 1 second and 75 Watts for 0.1 second, repeated 60 times.

For this application, TT Electronics has developed the Pulse Withstanding Chip (PWC series) described below.



Pulse Withstanding Chip Resistors	Size	0603	0805	1206	2010	2515	
Puise with standing Chip resistors	Power @70 °C	0.125W	0.25W	0.5W	1W	2W	
PWC Series	Resistance range	1R0 to 10M					
Excellent pulse handling performance	Tolerance	0.5, 1, 2, 5 %					
Thick film technology provides wide resistance and	LEV	75V	150V	200V	400V	500V	
temperature ranges (1 ohm to 10 meg ohm; -55 to +155 $^\circ$ C)	TCR	<10R:200ppm/ °C ≥10R:100ppm/ °C					
 Double-sided (DSC) and untrimmed (HPWC) versions 	Operating temperature	-55 to +155 °C					
	Values E96 preferred other values to sp					order	
http://www.ttelectronics.com/sites/default/files/resistors-datasheets/PWC.p							

LIT-AN-PROTECTION

www.ttelectronics.com/resistors

TT Electronics, 4222 South Staples St., Corpus Christi, TX 78411, USA

TT Electronics, Welwyn Electronics Park, Bedlington, Northumberland, NE22 7AA, UK

General Note TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

© TT Electronics plc